Принадлежность точки отрезку. Почему не работает классика?

Задумчивый Гибсон

Определить принадлежность точки отрезку, казалось бы, вполне себе тривиальная задача из школьного курса геометрии. Однако, есть определенные нюансы, которые заставляют усомниться в верности классической формулы:

Latex formula

Причины и постановка задачи

Запросы «как найти принадлежность точки отрезку» уводят на страницу «Пересечение прямых, угол и координаты пересечения», где есть пункт «Принадлежность точки отрезку». В нем рассматривается факт принадлежности точки отрезку, уже после того, как мы определили точку пересечения прямых. То есть точка уже принадлежит прямым, и это абсолютно точно. Осталось только определиться, точка в отрезке между двумя точками отрезка, либо где-то на прямой мимо них.

Людям свойственно искать готовые решения, и код, представленный в статье вряд ли удовлетворит запросу «как найти принадлежность точки отрезку, заданный двумя точками«. Поэтому здесь задачу так и сформулируем:

Есть отрезок, заданный точками P1(x1,y1) и P2 (x2,y2) . Необходимо определить, принадлежит ли точка P(x,y) этому отрезку.

Классическое уравнение

Предположим, вы делаете векторный редактор. Необходимо по курсору мыши определить попадает ли точка в ранее нарисованный отрезок. В этом многотрудном деле такая задача возникает всегда.

Для совместимости с Delphi 7 введем тип вещественной точки:

Почему бы не сделать сразу TPointF вместо типа TxPoint? Просто у меня гора старых исходников, где используется этот тип, а никакого TPointF не было ни в помине, ни в планах. Delphi 7 казалась вершиной инженерной мысли на тот момент.

В предложение uses дописываем следующее (ради TPointF, и чтобы компилятор XE не доставал хинтами):

Почему именно XE5? Если честно, нет возможности проверить, не ставить же ради этого всю линейку дельфей. Но в XE5 вещественная точка точно есть, а в Delphi 7 ее точно нет. Вот этим и объясняется выбор версии компилятора в директиве. Одни говорят, что TPointF появился в XE2, другие — аж в Delphi 2010. Короче, с таким директивным условием будет работать везде и точка.

Пишем небольшую функцию, которая использует классическое уравнение прямой, проходящей через две различные точки на плоскости, представленное выше.

SameValue — сравнивает два вещественных числа с учетом погрешности Epsilon. Находится в модуле Math, который надо подключить в предложении uses секции implementation.

Что происходит. Вначале проверяется допустимость координаты точки внутри координат отрезка. Условие необходимое, но недостаточное. Если координата может принадлежать отрезку, третьим условием проверяем нахождение точки на прямой, проходящей через точки отрезка.

Рис.1. Курсор точно на линии, но не определяет, что точка принадлежит отрезку

Если мы попытаемся по координатам курсора мыши определить, попала ли точка в отрезок, нас ждет фиаско. Складывается ощущение, что формула не работает, алгебра — отстой, все в жизни не так.

Расширенная классика

Для начала навесим на функцию еще пару условий, чтобы определить попадание в точки, задающие отрезок.

Ну, во-первых, вот и разгадка, куда делись значения 1 и 2 из результатов предыдущей функции. Во-вторых, теперь в конечные точки отрезка попадает отлично, но между ними по-прежнему не хочет работать.

На самом деле — математика по-прежнему царица наук, а мы пытаемся повенчать розу белую с черной жабой.

Выведем в интерфейс значения dx = (p2.x-p1.x), dy = (p2.y-p1.y) и т.д. Плюс результат работы функции (p.x-p1.x)*(p2.y-p1.y) — (p.y-p1.y)*(p2.x-p1.x). И убедимся, что при самых казалось бы максимально возможных приближениях к отрезку, результат ошеломляет своей двух- или трехзначной непохожестью на ноль.

Рис.2. Теперь определяет конечные точки, но между ними по-прежнему работает так себе…

Конечно, используя операцию умножения вместо деления, мы избегаем деления на ноль, укорачиваем код. Но при этом надо помнить, что умножение даже 1 на 12, это уже далеко от нуля, а если появляется еще и минус в разницах, то от нуля мы улетаем очень быстро и очень ощутимо.

На рисунке 2 прицел точно на линии, но разность координат, которую получаем из классического уравнения, и которая должна быть равна нулю, между тем равна:

f(x,y)=(x-x1) * (y2-y1) — (y-y1) * (x2-x1) = -16

Функция применима в точных расчетах, но не в векторном редакторе.

Модификация уравнения

Очевидно, надо вычислять как-то иначе. Например вычислять Y по имеющейся координате X и сравнивать с имеющейся координатой Y. Если разница меньше заданного Epsilon — точка принадлежит отрезку. Выразим Y из используемого уравнения прямой. Итак, дано:

Latex formula

Выразим Y:

Latex formula

И напишем еще одну функцию, в которой учтем ситуацию, когда (X2-X1) может быть равно нулю. Это ситуация вертикальной (или почти вертикальной) прямой.

Epsilon уже выступает, и как точность вычислений, и как допуск, при котором мы считаем, что точка на отрезке. Невозможно скрупулезно попасть мышкой в нужную точку отрезка, которая сама по себе уже есть огромное приближение к действительности. Все мы помним и любим Брезенхэма.

Рис.3. Все здорово определяет с учетом погрешности Epsilon=12 pix

Но, даже если мы упростили себе процесс «попадания» в отрезок, мы должны знать точные координаты на отрезке. Для этого у нас и появился тип вещественной точки TxPoint и возвращаемый параметр res. В этой версии функции мы производим расчет реальной точки на отрезке.

На рисунке 3 расчетная точка и ее координаты выделена коричневым цветом.

Однако, все равно есть нюанс. Если линия сильно вертикальна, то есть расстояние (X2-X1) невелико, попадать в линию все равно трудно.

Рис.3.1. На почти вертикальной линии функция снова капризничает

Связано с тем, что при уменьшении делителя, коим разность по X выступает в нашем случае, сильно вырастает результат, и чем расстояние (X2-X1) меньше, тем труднее попасть в Epsilon.

Итоговая функция

В стремлении к совершенству, всегда что-то незамысловатое, в пару строк кода, разрастается в какую-то все учитывающую портянку листинга.

Давайте проверять, что больше (X2-X1) или (Y2-Y1), и в зависимости от результата, будем высчитывать либо Y, либо X. Формулу для X не привожу, он очевидна.

Рис.4. На почти вертикальной линии стало все отлично

Почему такая большая функция получилась?

В функции помимо факта принадлежности точки отрезку, также осуществляется проверка на конечные точки — чтобы можно было менять их расположение мышкой. Также, функция возвращает «истинную» точку на отрезке, полученную из приближенной, содержащую погрешность Epsilon.

Можно сократить, не считать конечные точки, не анализировать «вертикальность» и «горизонтальность». Можно взять за настоящую ту точку, которую анализируем и не считать «истинную». Код в этом случае сильно сократиться. Поэтому лучше иметь полный комплект, из которого можно удалить «лишнее» на ваш взгляд.

Зачем нужны такие ощутимо большие проверки на вертикальность и горизонтальность. Ну, во-первых мы освобождаем от условий последний блок вычислений, во-вторых, если убрать, скажем, проверку на dy, погрешность станет в два раза меньше. Потому что отработает это условие: Abs(p1.Y-p.Y) + Abs(p2.Y-p.Y). Имея идеальную горизонтальную линию, подведя курсор на Epsilon допустимый интервал, мы получим в итоге Epsilon + Epsilon = 2 * Epsilon и условие конечно не сработает. Сработает, если подведем на расстояние в два раза меньшее Epsilon.

Если всех этих тонкостей не требуется, можно смело использовать либо эту, либо вообще эту функцию.

Классика всегда в моде или Математика — царица наук

Теперь давайте полученную в результате предыдущей функции вещественную точку res подставим в первую функцию. И убедимся, что теоретическая принадлежность точки отрезку работает прекрасно, просто в пространстве грубых целочисленных точек мы не в состоянии гарантированно получить такую точку, которая удовлетворила бы уравнению. Но если мы ее рассчитаем и получим значения с плавающей запятой — все заработает как надо.

Рис.5. Результат применения рассчитанной точки для первой функции

На рисунке 5 добавлен результат функции f(x,y)=(x-x1) * (y2-y1) — (y-y1) * (x2-x1) для рассчитанной точки на отрезке. Он равен, как и следовало ожидать, нулю. А также результат вызова первой функции, которая использует это уравнение и возвращает 3, если точка принадлежит отрезку. Что мы воочию и видим.

1)Поэтому в графике надо избегать типов TPoint, даже если это вызывает необходимость постоянно их округлять для функций GDI.

2)Поэтому функция правильная, классическая формула работает, просто в пространстве компьютерных упрощений надо использовать ту же самую формулу, но в другом качестве.


Скачать

Друзья, спасибо за внимание!

Надеюсь, материал был полезен.

Не пропустите новых интересных штуковин, подписывайтесь на телегу. )))

Если есть вопросы, с удовольствием отвечу.


Исходники и исполняемый файл для GDI и Delphi 7. Проверен в XE 7, XE 10.

Исходники (Delphi 7, XE7, XE10) 11 Кб

Исполняемый файл (zip) 213 Кб

Исполняемый файл c GDI+ (zip) 216 Кб

Как подключить GDI+ в Delphi 7 и без проблем скомпилировать в XE 7, XE 10 читаем в этой статье. Там же забираем исходники.


Чтобы нарисовать отрезок, нажмите мышь и, не отпуская, ведите курсор. При отпускании отрезок зафиксируется. При повторном нажатии начнет рисоваться новый отрезок.

За концы отрезка можно таскать. Если попали на отрезок, т.е. видна коричневая точка, можно таскать весь отрезок.

Исходники намеренно выложены в D7 варианте.

При компиляции в XE10 следует снять галочку с Enable High-DPI


5 5 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
2 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
BlackWitcher
Участник
3 месяцев назад

Четко, понятно и вполне доступным языком описан нюанс, позволяющий сэкономить массу времени для подобных задач. Спасибо!

2
0
Не нашли ответ на свой вопрос? Задайте его здесь!...x
()
x